Search results for "Nuclear density functional theory"

showing 10 items of 15 documents

Nuclear Energy Density Optimization: UNEDF2

2014

The parameters of the UNEDF2 nuclear energy density functional (EDF) model were obtained in an optimization to experimental data consisting of nuclear binding energies, proton radii, odd-even mass staggering data, fission-isomer excitation energies, and single particle energies. In addition to parameter optimization, sensitivity analysis was done to obtain parameter uncertainties and correlations. The resulting UNEDF2 is an all-around EDF. However, the sensitivity analysis also demonstrated that the limits of current Skyrme-like EDFs have been reached and that novel approaches are called for.

Physics[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th]skyrme energy densityNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]ta114nuclear density functional theoryNuclear TheoryFOS: Physical sciencesLibrary scienceOak Ridge National Laboratory7. Clean energyNuclear Theory (nucl-th)Nuclear physicsEnergy densityNational laboratoryComputer Science::Operating SystemsNuclear theory
researchProduct

Precision measurement of the magnetic octupole moment in 45Sc as a test for state-of-the-art atomic- and nuclear-structure theory

2020

We report on measurements of the hyperfine $A, B$ and $C$-constants of the $3d4s^2 ~^2D_{5/2}$ and $3d4s^2 ~^2D_{3/2}$ atomic states in $^{45}$Sc. High-precision atomic calculations of the hyperfine fields of these states and second-order corrections are performed, and are used to extract $C_{5/2}=-0.06(6)$ kHz and $C_{3/2}=+0.04(3)$ kHz from the data. These results are one order of magnitude more precise than the available literature. From the combined analysis of both atomic states, we infer the nuclear magnetic octupole moment $\Omega = -0.07(53) \mu_N b$, including experimental and atomic structure-related uncertainties. With a single valence proton outside of a magic calcium core, scan…

Nuclear and High Energy PhysicsoctupoleNuclear Theorynuclear density functional theory010308 nuclear & particles physicsPhysicsQC1-999tiheysfunktionaaliteoriaFOS: Physical sciences01 natural sciencesNuclear Theory (nucl-th)0103 physical sciencesnuclear structurePhysics::Atomic Physicsoktupooli ydinrakenneNuclear Experiment (nucl-ex)010306 general physicsydinfysiikkaNuclear Experiment
researchProduct

Isospin-symmetry breaking in masses of ≃ Nuclei

2018

Effects of the isospin-symmetry breaking (ISB) beyond mean-field Coulomb terms are systematically studied in nuclear masses near the N=Z line. The Coulomb exchange contributions are calculated exactly. We use extended Skyrme energy density functionals (EDFs) with proton–neutron-mixed densities, to which we add new terms breaking the isospin symmetry. Two parameters associated with the new terms are determined by fitting mirror and triplet displacement energies (MDEs and TDEs) of isospin multiplets. The new EDFs reproduce MDEs for the T=12 doublets and T=1 triplets, and TDEs for the T=1 triplets. Relative strengths of the obtained isospin-symmetry-breaking terms are not consistent with the d…

Nuclear and High Energy PhysicsParticle physicsprotonitNuclear TheoryTriplet displacement energy (TDE)01 natural sciencesComputer Science::Digital LibrariesDisplacement (vector)Energy density functional (EDF)Proton–neutron mixingproton–neutron mixingnuclear physicstiheysmirror displacement energy (MDE)0103 physical sciencesCoulombSymmetry breaking010306 general physicsnuclear density functional theory (DFT)density functional theoryLine (formation)Physicsdensityenergiata114protons010308 nuclear & particles physicsScatteringtiheysfunktionaaliteorianeutronsneutronitenergy density functional (EDF)lcsh:QC1-999Symmetry (physics)Isospin symmetry breaking (ISB)Isospintriplet displacement energy (TDE)isospin symmetry breaking (ISB)ydinfysiikkaMirror displacement energy (MDE)Parametrizationlcsh:PhysicsenergyPhysics Letters
researchProduct

Prompt and delayed spectroscopy of 203At : Observation of a shears band and a 29/2+ isomeric state

2018

Using fusion-evaporation reactions, a gas-filled recoil separator, recoil-gating technique and recoil-isomer decay tagging technique we have extended the level scheme of 203 At ( N = 118 ) significantly. We have observed an isomeric [ τ = 14.1 ( 3 ) μ s ] state with a spin and parity of 29 / 2 + . The isomeric state is suggested to originate from the π ( h 9 / 2 ) ⊗ ∣ ∣ 202 Po ; 11 − ⟩ coupling, and it is depopulated through 286 keV E 2 and 366 keV E 3 transitions. In addition, we have observed a cascade of magnetic-dipole transitions which is suggested to be generated by the shears mechanism. peerReviewed

level densitiesnuclear spinelectromagnetic transitionsnuclear density functional theorytiheysfunktionaaliteoriaspektroskopialifetimeswidthsenergy levelsNuclear Experimentisomer decaysydinfysiikkanuclear parity
researchProduct

Correlating Schiff Moments in the Light Actinides with Octupole Moments

2018

We show that the measured intrinsic octupole moments of $^{220}$Rn, $^{224}$Ra, and $^{226}$Ra constrain the intrinsic Schiff moments of $^{225}$Ra$^{221}$Rn, $^{223}$Rn, $^{223}$Fr, $^{225}$Ra, and $^{229}$Pa. The result is a dramatically reduced uncertainty in intrinsic Schiff moments. Direct measurements of octupole moments in odd nuclei will reduce the uncertainty even more. The only significant source of nuclear-physics error in the laboratory Schiff moments will then be the intrinsic matrix elements of the time-reversal non-invariant interaction produced by CP-violating fundamental physics. Those matrix elements are also correlated with octupole moments, but with a larger systematic u…

INTRINSIC REFLECTION ASYMMETRYPARAMETRIZATIONnuclear many-body theoryODDNuclear TheoryNUCLEInuclear density functional theorySKYRME INTERACTIONFOS: Physical sciencesRA-225114 Physical sciencesnuclear structure and decays3100Nuclear Theory (nucl-th)FORCESydinfysiikkanuclear tests of fundamental interactions
researchProduct

Correlating Schiff Moments in the Light Actinides with Octupole Moments

2018

nuclear many-body theoryta114nuclear density functional theoryydinfysiikkanuclear structure and decaysnuclear tests of fundamental interactionsPhysical Review Letters
researchProduct

Solution of the Skyrme-Hartree–Fock–Bogolyubovequations in the Cartesian deformed harmonic-oscillator basis. (VIII) hfodd (v2.73y): A new version of …

2017

We describe the new version (v2.73y) of the code HFODD which solves the nuclear Skyrme Hartree-Fock or Skyrme Hartree-Fock-Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following new features: (i) full proton-neutron mixing in the particle-hole channel for Skyrme functionals, (ii) the Gogny force in both particle-hole and particle-particle channels, (iii) linear multi-constraint method at finite temperature, (iv) fission toolkit including the constraint on the number of particles in the neck between two fragments, calculation of the interaction energy between fragments, and calculation of the nuclear and Coulomb ene…

Angular momentumNuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]SYMMETRYNuclear TheoryHartree–Fock methodGeneral Physics and AstronomyFOS: Physical sciencesGogny forceSkyrme interactionNuclear density functional theorySelf-consistent mean-field01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)Energy density functional theorySYSTEMSQuantum mechanics0103 physical sciences010306 general physicsHarmonic oscillator[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]PhysicsHartree–Fock–Bogolyubovta114010308 nuclear & particles physicsAugmented Lagrangian methodInteraction energyAngular-momentum projection113 Computer and information sciencesHardware and ArchitecturePairingIsospintheoretical nuclear physicsSelf-consistent mean fieldHartree-Fock-BogolyubovPairing correlations
researchProduct

Model nuclear energy density functionals derived from ab initio calculations

2020

We present the first application of a new approach, proposed in [Journal of Physics G: Nuclear and Particle Physics, 43, 04LT01 (2016)] to derive coupling constants of the Skyrme energy density functional (EDF) from ab initio Hamiltonian. By perturbing the ab initio Hamiltonian with several functional generators defining the Skyrme EDF, we create a set of metadata that is then used to constrain the coupling constants of the functional. We use statistical analysis to obtain such an ab initio-equivalent Skyrme EDF. We find that the resulting functional describes properties of atomic nuclei and infinite nuclear matter quite poorly. This may point out to the necessity of building up the ab init…

Nuclear and High Energy PhysicsNuclear Theoryab initio methodstilastomenetelmätNuclear TheoryAb initioFOS: Physical sciences114 Physical sciences01 natural sciences7. Clean energyNuclear Theory (nucl-th)symbols.namesakeAb initio quantum chemistry methodsQuantum mechanics0103 physical sciences010306 general physicsGreen functionsPhysicsCoupling constantEnergy density functionalnuclear density functional theory010308 nuclear & particles physicstiheysfunktionaaliteoriaNuclear matterAtomic nucleusEnergy densitysymbolsstatistical methodsHamiltonian (quantum mechanics)ydinfysiikka
researchProduct

Thouless-Valatin Rotational Moment of Inertia from the Linear Response Theory

2017

Spontaneous breaking of continuous symmetries of a nuclear many-body system results in appearance of zero-energy restoration modes. Such modes introduce a non-physical contributions to the physical excitations called spurious Nambu-Goldstone modes. Since they represent a special case of collective motion, they are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total angular momentum operator. We examine the role and effects of the pairing correlations on the rotational cha…

Angular momentumNuclear Theorymedia_common.quotation_subjectNuclear TheoryFOS: Physical sciencesRotary inertiaInertia114 Physical sciences01 natural sciencesbinding energy and massesMoment of inertia factorNuclear Theory (nucl-th)symbols.namesake0103 physical sciences010306 general physicsRotational partition functionEuler's equationsEQUATIONSmedia_commonPhysicsta114nuclear density functional theory010308 nuclear & particles physicstiheysfunktionaaliteoriacollective modelsMoment of inertianuclear structure and decayssuprajuoksevuusRotational energyClassical mechanicssuperfluiditysymbolsydinfysiikka
researchProduct

Gamow-Teller response in the configuration space of a density-functional-theory–rooted no-core configuration-interaction model

2018

Background: The atomic nucleus is a unique laboratory in which to study fundamental aspects of the electroweak interaction. This includes a question concerning in medium renormalization of the axial-vector current, which still lacks satisfactory explanation. Study of spin-isospin or Gamow-Teller (GT) response may provide valuable information on both the quenching of the axial-vector coupling constant as well as on nuclear structure and nuclear astrophysics.Purpose: We have performed a seminal calculation of the GT response by using the no-core configuration-interaction approach rooted in multireference density functional theory (DFT-NCCI). The model treats properly isospin and rotational sy…

HE-8Nuclear TheoryNUCLEAR-STRUCTURE114 Physical sciences01 natural sciencesENERGY-LEVELSQuantum mechanics0103 physical sciencesBETA-DECAY010306 general physicsPhysicsta114nuclear density functional theory010308 nuclear & particles physicsGROUND-STATE PROPERTIESNuclear structureNuclear shell modelConfiguration interactionelectroweak interactions in nuclear physicsIsospinAtomic nucleusSHELL-MODELSlater determinantSum rule in quantum mechanicsConfiguration spacebeta decayPhysical Review C
researchProduct